
340 Technical Notes 

7. B. Yucel and S. Kakac, Forced flow boiling and burnout in 
rectangular channels, Proc. 6th Int. Conf Heat Transfer, 
Vol. 1, p. 387 (1978). 

8. R. D. Boyd et al., Experimental flow boiling for high heat 
flux applications, Proc. of the 1985 U.S.-Japan Heat 
Trans. Joint Seminar, in Heat Transfer Problems in High 
Technology and Power Engineering, W. J. Yang (Ed.), 
Hemisphere, Washington (1985). 

9. R. W. Bowring, Asimple but accurate round tube, uniform 
heat flux, dryout correlation over the pressure range of0.7 
to 17. MN/m2 (100 psia), Atomic Energy Establish- 
ment, Winfrith, U.K. AEEW-R-789, (March 1972). 

10. Y. Katto, On the heat-flux/exit quality type correlation of 
CHF of forced convection boiling in uniformly heated 
vertical tubes, Int. J. Heat Mass Transfer 26, 533-539 
(1981). 

Inl.J.Hear Mass Tran.s~r. Vol. 29,No. 2,pp. 34lL342, 1986 0017-9310/8633.00+0.00 
Printed in Great Britain Pergamon Press Ltd. 

Transient conduction in a three-dimensional composite slab 

M. D. MIKHAILOV* and M. N. ~)ZI$IK 

Mechanical and Aerospace Engineering Department, Box 7910, North Carolina State University, Raleigh, 
NC 27695. U.S.A. 

(Received 20 March 1985) 

INTRODUCTION 

IN A RECENT issue of this journal, Salt [l, 21 examined in two 
consecutive papers the eigenvalues and eigenfunctions of the 
eigenvalue problem associated with the solution of transient 
heat conduction in a two-dimensional composite slab having 
three of its boundaries insulated with the fourth boundary 
parallel to the layers subjected to a uniform temperature. By 
considering the physical significance of the eigenvalues it was 
concluded that : 

while it is possible to have a temperature variation 
across a fully insulated composite slab with no 
temperature variation along it, it is impossible to have 
temperature variation along the slab without having 
temperature variation across it. 

In the present brief note we analyze the three-dimensional 
version of the problem considered by Salt [ 1,2 J and show that 
similar results and conclusions are readily obtainable as a very 
special case of the general solutions given in refs. [3, 41. 
Furthermore, the recently developed sign-count method 
[4-6] is applicable for the solution of the two- or three- 
dimensional eigenvalue problems associated with heat 
conduction in multilayer slabs. 

STATEMENT OF THE PROBLEM 

We consider three-dimensional transient conduction in a 
nonhomogeneous finite medium in which the thermal and 
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physical properties vary only in the z-direction. The 
mathematical formulation of the problem is taken as 
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and the initial condition 

T(x, Y, z, 0) = I-(x, Y> 4. (W 

where w(z) = c(z)p(z), the specific heat c(z), the density p(z) and 
the thermal conductivity k(z) are known function of the z 
coordinate. 

Clearly, the problem (1) describes as a special case a 
multilayer composite slab when w(z) and k(z) are chosen as 
stepwise functions in the z-direction, that is 

k(z) = kk, w(z) = We for 

Zk-i <Z<Zk, k=l,2 ,..., n. (2) 

NOMENCLATURE 

a, b, c width, length and thickness of the slab X,r,Z eigenfunctions defined by equations (5) 

fk’;; y’ z, 
initial temperature distribution (6) and (7) 

1, ;, n 
known function of the z coordinate w(z) known function of the z coordinate. 
integers 

t time Greek symbols 
T(x, y, z, t) temperature in the slab L vln longitudinal eigenvalues 

x9 Y positions along the slab L&n eigenvalues 
Z position across the slab $(x, Y, z) eigenfunctions. 
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SOLUTION OF THE PROBLEM 

The eigenvalue problem appropriate for the solution of the 
problem (1) is taken as 
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To develop solution for this eigenvalue problem we assume a 
separation of variables in the form 

$(x, Y, z) = X(4 - Y(Y) - Z(z) (4) 

and split up the problem (3) into the following three, separated, 
one-dimensional eigenvalue problems 

X(x) + I’X(x) = 0, in 0 < x < a (5a) 

x’(0) = 0, X(a) = 0 (5b, c) 

Y”(y)+v’Y(y)=O, in O<y<b (64 

Y’(0) = 0, Y’(b) = 0 (6b, c) 

and 

da4 
i 44x 

{ 1 + {pzW(z)-(~2+V~)k(Z)}Z(Z) = 0 

in 0 < z i c (7a) 

z’(0) = 0, Z(c) = 0 (7b, c) 

The eigenvalues I,, v, (I, m = 0, 1,2,. . . , co), the eigenfunc- 
tions X,(x), Y,(y) and the normalization integrals N,, N, of the 
eigenvalue problems (5) and (6) are determined in ref. [4] as 

X,(x) = cos (1,x), 

a 
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b 

for I = 1,2,... 

for 1=0 
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for m = 1,2,... 

for m = 0. 
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The eigenvalue problem (7) coincides with the classical 
Sturm-Liouville problem treated in ref. [S] when we set 

(A* + vz)k(z) 3 d(z) (10) 

where d(z) is the coefficient appearing in the Sturm-Liouville 
problem. Therefore the procedure developed in ref. [5] for the 
automatic solution of the eigenvalue problems is applicable 
for the solution of the eigenvalue problem (7) or its multilayer 
equivalent when the coefficients k(z) and w(z) are chosen as 
stepwise functions given by equations (2). 

We note that, for each value of I, and v,, there is an 
associated infinite set of real eigenvalues tin I knlm 
(n = 1,2 ,..., co). Once the eigenvalues and the eigen- 

functions are known, the solution of the problem (1) follows 
immediately as a special case from the general results given 
in refs. [3,4]. We obtain 

w% Y, z, 0 = 

w(~‘)Z,~~(z’)j-(x’, y', z’) dx’ dy’ dz’ 

(fla) 

where the normalization integrals are 

N,=_ ’ s X:(x) dx, N, = 
0 I 
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N “lnt = w(z)Z:,(z) dz 

we also note that 

Depending on the functional form of the initial condition 
f(z, y, z) some interesting conclusions can be drawn from the 
solution given by equations (11). 

1. The initial condition depends on the z-variable only, 
namely 

f(x, Y, z) = f(z). (13) 

Then introducing equations (12) and (13) into the solution (11) 
we obtain 

7% 4 = f ew (--PWM 
“=I 

where the eigenvalues p(. and the eigenfunctions Z,(z) are 
determined from equations (7) by setting Iz = v = 0. The 
results given by equation (14) implies that when the initial 
temperature varies only across the layers(i.e. in the z-direction) 
for the three-dimensional multilayer slab problem obtainable 
from equations (1), there is no temperature variation parallel 
to the layers (i.e. x- and y-directions). 

2. The initial condition depends on the x- and y-variables 
only, namely 

f(x, Y, z) = f(& Y). (15) 

For this case we introduce equation (15) into equation (lla); 
but the general form of the solution given by equations (11) is 
not altered. This result implies that when the initial 
temperature varies only parallel to the layers (i.e. in the x- and 
y-directions) in the three-dimensional multilayer slab problem 
obtainable equations (I), there is also a temperature variation 
across the layers (i.e. in the z-direction). 

Clearly, the conclusions drawn from the two special cases 
considered above are the generalization to the three- 
dimensional situation of the two-dimensional multi-layer slab 
problemconsideredin refs. [1,2]. Furthermore, thesign-count 
algorithm described in ref. [6] can readily be used to compute 
the eigenvalues associated with the composite layer problem. 
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INTRODUCTION 

DIMENSIONAL analysis shows 

II, = Ra, Pr/( 1+ Pr), (1) 

in the usual nomenclature, to be the natural parameter 
incorporating buoyancy and the weighted contributions of 
both inertial and viscous effects into the correlation of heat 
transfer in natural convection from the vertical isothermal 
plate. The parameter ensures the correct limits for large and 
small values of the Prandtl number, where Nu,/II~/~ becomes 
constant. Accordingly, in terms of the similarity variable 

tl = (Y/X) (I&/4)“‘+, (2) 

temperature distributions prove to be nearly similar for all 
fluids. The analysis suggests an appropriate expression for 
dimensionless wall friction, pointing to an approximate 
analogy between heat transfer and friction. 

SIMILARITY VARIABLE BY 
DIMENSIONAL ANALYSIS 

The reduction of the number of independent variables by 
one for a problem governed by partial differential equations 
requires the search for a similarity variable which 
appropriately combines two of the independent variables. 
Among the several methods available for this search, that of 
dimensional analysis may be extended by a judicious account 
of the physical similitude of governing equations. The 

extension employs the concept of two-length dimensional 
analysis [I]. This approach may give a similarity variable that 
carries an appropriate weight ofseveral physical parameters in 
addition to the proper combination of two independent 
variables. We illustrate this observation by considering the 
classical problem of natural convection from the vertical 
isothermal plate in a Newtonian fluid for which the viscous 
dissipation may safely be neglected [Z]. This problem was 
recently reviewed by Martin [3]. 

Let u and 8 - T, - T, denote the velocity and temperature, 
respectively, and 6 - y and I - y denote the lengths 
characterizing flux and flow, respectively. Equating flow to 
flux in the balance of thermal energy gives the characteristic 
velocity 

u - la@, (3) 

which is not externally imposed but is determined by the 
problem. 

Balancing buoyancy against the sum of inertial and x4scous 
forces in the balance of momentum gives 

h gB@ dwu2 -_ 
h+fv u2/1+ vu/62 = 1 + vl/(u62) ’ (4) 

or, after eliminating u by equation (3), 

Pr 
- 1+~r Ra&/~Y’. (5) 

Equation (5) suggests the similarity variable stated by 

NOMENCLATURE 

a thermal diffusivity 
C constant 
9 acceleration of gravity 
1 reference length in x 
Nu, local Nusselt number 
Pr Prandtl number, v/a 
Ra, local Rayleigh number, 
T _ TgB(T,- T,)x3/(av) 

temperature difference between plate and 
w frZe stream 

u velocity component in x 
x coordinate from leading edge 

Y coordinate normal to plate. 

Greek symbols 
B coefficient of thermal expansion 
6 reference length in y 

similarity variable, equation (2) 
z dimensionless streamfunction, equation (6) 
0 dimensionless temperature, equation (6) 

h, 
kinematic viscosity 
dimensionless number, equation (1) 

P density 
?v wall shear stress. 


